End Sem Exam July 2023
Program: M.Tech - Structural Engineering
Course Code: PC-MST201

Course Name: Finite Element Analysis

F.4.M. Tech (Structural eng 9.) Notes:

1. Attempt any five questions.
2. Assume appropriate data wherever required.

SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai -400058

End Sem Exam July 2023

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Fresthe
Munshi Nagar, Andheri (West), Number - 4002 zs
End Semester Examination
July - 2023
Max. Marks: 100
Class: M.Tech. Semester: II
Name of the Course: Earthquake Engineering
Pare CivilEngg

Instructions: F.Y.M.Tech (Structural eng g.) Sem -II

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly

Q3 (a)	What is response spectrum? Briefly explain the characteristics of response spectrum.	4	3	3
03 (b)	The plan of one storey building is as shown in figure. The structure consists of a roof idealized as a rigid diaphragm, supported on three frames A, B, and C as shown. The roof weight is uniformly distribuied and has magnitude $200 \mathrm{Kg} / \mathrm{m}^{2}$. The lateral stiffness are $\mathrm{K}_{\mathrm{y}}=25000 \mathrm{KN} / \mathrm{m}$ for frame A and K_{x} $=25000 \mathrm{KN} / \mathrm{m}$ for frames B and $\mathrm{K}_{\mathrm{x}}=30,000$ for frame C The plan dimensions are $b=30 \mathrm{md}=25 \mathrm{~m}$. The height of building is 8 m . (i) In general how many degrees of freedom for this system? Identify those dof. (ii) Calculate the stiffness matrix and write the equation of motion if the system is subjected to ground motion. $\mathrm{u}_{\mathrm{gx}}(\mathrm{t})$ in x direction only. (iii) If $\mathrm{Kx}=25,000 \mathrm{KN} / \mathrm{m}$ for both frames $\mathrm{B} \& \mathrm{C}$, and $\mathrm{e}=$ 0 and the system is subjected to the ground motion only in X direction, the response spectrum of which is shown in figurel. Determine the design value of lateral deformation, base shear and bending moment for the system.	1 10 5	3 1,3 3	1 1,4 1,4
Q4 (a)	For a residential RCC special moment resisting building frame the seismic weights on floors are $\mathrm{W}_{1}=2079.1 \mathrm{KN}, \mathrm{W}_{2}=$ 2863.9 KN and $\mathrm{W}_{3}=1294.3 \mathrm{KN}$. The ground story height is 4.0 m and first and second story height is 3.2 m . The building is founded on hard soil and situated in zone IV. Determine the distribution of lateral forces and story shear by using equivalent static method. Use the response spectra given in figure 2	8	4	5

Figure: 3 A

$$
\text { Figure. } 4
$$

Figure 5

Figue 6

Table 4 Clasificarina of Types of Soils for Determiniay the Spectrum to be lised to
Estimate Design Earthquake Force
(6) facese (1.4.2.1)

Frg: 3

$$
1-2[D L+L]
$$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examination - July 2023 Examinations

Program: F.Y.M.Tech (Structural Engineering)
Course Code: EC-MST203
Course Name: Bridge Engineering
Notes: F.4.M.Tech (Structural eng g.) Sem-II

1) Attempt any 5 questions out of 7
2) Assume suitable data if missing and mention the same
3) Answers to all sub-questions shall be grouped together
4) Use of IRC 6, IRC 112, and IS 800 is allowed is allowed

	b) Design T-beam girder of span 15 m as per IRC 112-2011 with following specifications: UDL on girder due to SIDL $=8 \mathrm{kN} / \mathrm{m}$ UDL on girder due to wearing course $=2.5 \mathrm{kN} / \mathrm{m}$ UDL due to slab $=18 \mathrm{kN} / \mathrm{m}$ Live load as per Q.3(a) Effective slab width as beam flange $=2.4 \mathrm{~m}$ Depth of slab $=0.25 \mathrm{~m}$ Use M35 and Fe500	13	3	4	3.1.4 3.2.
4)	For the steel truss bridge shown below: Equivalent UDL due to live loads $=50 \mathrm{kN} / \mathrm{m}$ SIDL $=10 \mathrm{kN} / \mathrm{m}$ Use E250grade steel. Design members AC and CD. Also design the connection for member $C D$	20	3	4	$\begin{aligned} & 3.1 .4 \\ & 3.2 . \end{aligned}$
					,
5)	a) Explain the behavior of box girder under transverse loads. What are the various techniques for analysis of box girder? Explain the limitations of each.	10	3	2	$\begin{aligned} & 2.3 .1 \\ & 2.3 .2 \end{aligned}$
	b) Calculate the axial load and uniaxial moment carrying capacity of an RCC pier of size $1400 \times 1400 \mathrm{~mm}$. The pier has 7 bars of 25 mm diameter along each face. Concrete grade is M45 and steel grade is Fe 500. Assume: Neutral axis at 450 mm from extreme compression fibre. Use rectangular parabolic stress block as per IRC 1122011	10	3	4	$\begin{aligned} & 1.4 .1 \\ & \text { 3.1.4 } \end{aligned}$
6)	Design a shallow foundation as per IRC 112 for a pier of size $1.25 \mathrm{~m} \times 1.25 \mathrm{~m}$. The design axial load $=2800 \mathrm{kN}$ and design moment along transverse axis $=750 \mathrm{kNm} . \mathrm{SBC}$ of soil $=$ $165 \mathrm{kN} / \mathrm{m}^{2}$. Use M40 and Fe500. Provide checks for : a) Flexure	20	3	4	$\begin{gathered} { }^{4} \\ 3.1 .4 \\ 3.2 .1 \end{gathered}$

	b) One way shear c) Punching shear at distance $2 \times$ depth of footing from face of pier and at face of pier				
7)	a) Explain briefly the suitability and components of a cable stayed bridge and load transfer mechanism for such bridge.	10	2	2	3.1 .4 3.2 .1
	b) Explain the classification of bridges based on i) structural form, ii)Function	05	1	2	$2.2 .:$
	c) Explain the data to be collected for selecting a site for constructing bridge	05	1	2	$2.2 .:$

SARDAR PATEL COLLEGE OF ENGINEERING
 (Government Aided Autonomous institute)
 Munshi Nagar, Andheri (W) Mumbai - 400058

TERM END EXAMINATION JULY 2023
Program: M. tech Civil (Structural engineering)
Course Code: EC MST214
Course Name: Advanced design of concrete Structures
Notes: 1) Each question carries 20 marks
2) Solve any five questions out of seven questions

Q.No.	Questions	Points	CO	BL	PI
Q. 1(a)	For a doubly reinforced beam of size $30 \mathrm{~cm} \times 50 \mathrm{~cm}$ (overall depth) is provided with $25 \mathrm{~cm}^{2}$ steel as compression and tension reinforcement at effective cover of 5 cm each, calculate ultimate moment carrying capacity of beam. The concrete has a 28 day cube strength of $250 \mathrm{~kg} / \mathrm{cm}^{2}$ and steel has compressive and tensile yield stress of $2500 \mathrm{~kg} / \mathrm{cm}^{2}$ and $2800 \mathrm{~kg} / \mathrm{cm}^{2}$ respectively. Use ultimate load method	14	COI	L6	
Q.1(b)	Explain how limit state of serviceability for deflection and cracking is taken care by various IS 456 clauses	06	CO 1	L2	
Q. 2(a)	For the beam shown with the service load, Use load factors 1.8 for dead load and 2.2 for live load. Design the beam using Cambridge method approach. Give checks for rotation required and rotation capacity available. The concrete has a 28 day cube strength of $200 \mathrm{~kg} / \mathrm{cm}^{2}$ and steel has tensile yield stress of 2800 $\mathrm{kg} / \mathrm{cm}^{2}$	20	CO 1	L2	
Q.3(b)	Explain the concept of tensile hinge and compression hinge used in Baker's method of analysis	06	CO 1	L3	

SARDAR PATEL COLlege of engineering

(Govermment Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

TERM END EXAMINATION JULY 2023

Q. 3(a)	Using the Virtual Work Method, analyze a 250 mm thick reinforced concrete slab spanning 6.0 mx 4.5 m . The slab occupies a corner bay of a floor, which has columns at each corner connected by stiff beams in each direction. The slab can be regarded as being continuous over two adjacent sides and simply supported on the other two. Assume isotropic reinforcement with equal ' m ' in each direction. Calculate value of m (assume yield lines formation at an angle of 45 degrees.)	14	CO1	L5	
Q. 4	For the slab beam arrangement shown calculate design bending moments for slab after redistribution of moments. Design the slab reinforcement. The slabs are subjected to live load of $3.0 \mathrm{Kn} / \mathrm{m} 2$ in addition to floor load $1 \mathrm{Kn} / \mathrm{m} 2$ and self-weight. Draw reinforcement in section. Use Limit state Method.	20	$\mathrm{CO1}$	L6	
Q. 5	Analyze intermediate panel and Calculate design bending moments for flat slab of size $7.0 \mathrm{~m} \times 7.0 \mathrm{~m}$. The slab is supported by columns of size $450 \mathrm{~mm} \times 450 \mathrm{~mm}$. Provide drop panel. Use M_{20} concrete \& Fe 415 Use direct design method steel. Draw reinforcement in plan	20	CO 2	L6	
Q. 6	Perform preliminary analysis upto stress distribution for compatibility only for the folded plate shown. Thickness of plate 110 mm . Loading on inclined plate $200 \mathrm{~kg} / \mathrm{m} 2$ and loading on horizontal plate $250 \mathrm{~kg} / \mathrm{m} 2$. Length of plate 20 m	20	CO2	L5	

[2]
(Govermment Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
TERM END EXAMINATION JULY 2023

2)

$$
\begin{aligned}
& P_{n}=\frac{\omega b}{\left(\mu+\mu^{\prime}\right)}\left[1-\frac{\sqrt{1+u^{2}}}{\sqrt{\frac{2 n}{\Delta}\left(\mu+u^{\prime}\right)+1\left(1-\mu u^{\prime}\right)}}\right] \\
& P_{n}=\frac{\omega b^{2}}{2\left(\mu+u^{2}\right)^{2}}\left[\sqrt{\left.\frac{2 n\left(\mu+u^{\prime}\right)+\left(1-\mu u^{\prime}\right)}{b}-\sqrt{1+u^{2}}\right]^{2}}\right.
\end{aligned}
$$

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

TERM END EXAMINATION JULY 2023

Table for slab moment coefficients
(Chumet D.I.I and 24.4.1)

Bharatiya Vidya Bhavan's
Sardar Patel College of Engineering
(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.
End -SEM Examinations, JULY 2023

Total points:100
Duration: Total Time allotted will be 3 Hr .
Class: M. TECH(CM) \& MTECH(STR) Semester: II Program: Civil
Name of the Course-Operational Research Course Code : OE-PG03 PC-MTCM-202
Instructions: F. 4.M. Tech (Strui/Cons.mgt.) Sem -II

1. Draw neat diagrams
2. Assume suitable data if necessary and state the clearly.

	Subject to, $\begin{aligned} & 3 \mathrm{X} 1+4 \mathrm{X} 2<=6 \\ & 6 \mathrm{X} 1+\mathrm{X} 2<=3 \\ & \mathrm{X} 1, \mathrm{X} 2>=0 \end{aligned}$				
Q3(A)	Explain all types of cost involved in Deterministic inventory model If for a project, annual demand is $10000 /$ year, order cost $=300 /$ order, carrying cost $=$ Rs $4 /$ unit/year then 1. Estimate Economic order quantity and Total cost of project 2. Draw graphs for all types of costs in EOQ concept.	10	2,4	4	4.3.2
	Find the maximum flow above in the Model.	10	2,4	3	2.3.2
Q4(A)	Customers arrive at the clinic at the rate of $8 /$ hour (Poisson's Ratio), And doctor can serve at the rate of 9 /hour (Exponential), 1. What is the probability that customer does not join the que and walks in doctor's room? 2. What is the probability that there is no que? 3. What is the probability that there are 10 customers in the que? 4. What is the expected number in the system? 5. What is the expected waiting time in the que?	10	3,4	4	2.3.2
Q4(B)	Consider following parametric linear programming problem- $\begin{aligned} & \text { Max } Z=(10-2 \mathrm{t}) \mathrm{X} 1+(5-3 \mathrm{t}) \mathrm{X} 2 \\ & \text { S.T. } 8 \mathrm{X} 1+2 \mathrm{X} 2<=48 \\ & 2 \mathrm{X} 1+4 \mathrm{X} 2<=24 \\ & \\ & \mathrm{X} 1, \mathrm{X} 2, \mathrm{t}>=0 \end{aligned}$ Perform parametric analysis with respect to objective function coefficient and find the range of t over which optimal solution will not change. Use following linear programming The optimum table -	10	2,4	3	4.3.3

$4-7$	0
$5-6$	4
$5-7$	3
$5-8$	6
$6-8$	5
$7-8$	5

Determines all types of floats and critical Path using information given in above table.

Activity	Duration(weeks)		
	a	m	b
$1-2$	1	1	7
$1-3$	1	4	7
$1-4$	2	2	8
$2-5$	1	1	1
$3-5$	2	5	14
$4-6$	2	5	8
$5-6$	3	6	15

I) Construct the project network
II) Find expected duration and variance of each activity
III) Find critical path and expected project duration time
IV) What is the probability of completing the project on or before 18 weeks?
V) What is the probability of completing the project 3 weeks earlier than expected time?

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.9	. 00005	. 00005	. 00004	. 00004	. 00004	. 00004	. 00004	. 00004	. 00003	. 00003
-3.8	. 00007	. 00007	. 00007	. 00006	. 00006	. 00006	. 00006	. 00005	. 00005	. 00005
-3.7	. 00011	. 00010	. 00010	. 00010	. 00009	. 00009	. 00008	. 00008	. 00008	. 00008
-3.6	. 00016	. 00015	. 00015	. 00014	. 00014	. 00013	. 00013	. 00012	. 00012	. 00011
-3.5	. 00023	. 00022	. 00022	. 00021	. 00020	. 00019	. 00019	. 00018	. 00017	. 00017
-3.4	. 00034	. 00032	. 00031	. 00030	. 00029	. 00028	. 00027	. 00026	. 00025	. 00024
-3.3	. 00048	. 00047	. 00045	. 00043	. 00042	. 00040	. 00039	. 00038	. 00036	. 00035
-3.2	. 00069	. 00066	. 00064	. 00062	. 00060	. 00058	. 00056	. 00054	. 00052	. 00050
-3.1	. 00097	. 00094	. 00090	. 00087	. 00084	. 00082	. 00079	. 00076	. 00074	. 00071
-3.0	. 00135	. 00131	. 00126	. 00122	. 00118	. 00114	. 00111	. 00107	. 00104	. 00100
-2.9	. 00187	. 00181	. 00175	. 00169	. 00164	. 00159	. 00154	. 00149	. 00144	. 00139
-2.8	. 00256	. 00248	. 00240	. 00233	. 00226	. 00219	. 00212	. 00205	. 00199	. 00193
-2.7	. 00347	. 00336	. 00326	. 00317	. 00307	. 00298	. 00289	. 00280	. 00272	. 00264
-2.6	. 00466	. 00453	. 00440	. 00427	. 00415	. 00402	. 00391	. 00379	. 00368	. 00357
-2.5	. 00621	. 00604	. 00587	. 00570	. 00554	. 00539	. 00523	. 00508	. 00494	. 00480
-2.4	. 00820	. 00798	. 00776	. 00755	. 00734	. 00714	. 00695	. 00676	. 00657	. 00639
-2.3	. 01072	. 01044	. 01017	. 00990	. 00964	. 00939	. 00914	. 00889	. 00866	. 00842
-2.2	. 01390	. 01355	. 01321	. 01287	. 01255	. 01222	. 01191	. 01160	. 01130	. 01101
-2.1	. 01786	. 01743	. 01700	. 01659	. 01618	. 01578	. 01539	. 01500	. 01463	. 01426
-2.0	. 02275	. 02222	. 02169	. 02118	. 02068	. 02018	. 01970	. 01923	. 01876	. 01831
-1.9	. 02872	. 02807	. 02743	. 02680	. 02619	. 02559	. 02500	. 02442	. 02385	. 02330
-1.8	. 03593	. 03515	. 03438	. 03362	. 03288	. 03216	. 03144	. 03074	. 03005	. 02938
-1.7	. 04457	. 04363	. 04272	. 04182	. 04093	. 04006	. 03920	. 03836	. 03754	. 03673
-1.6	. 05480	. 05370	. 05262	. 05155	. 05050	. 04947	. 04846	. 04746	. 04648	. 04551
-1.5	. 06681	. 06552	. 06426	. 06301	. 06178	. 06057	. 05938	. 05821	. 05705	. 05592
-1.4	. 08076	. 07927	. 07780	. 07636	. 07493	. 07353	. 07215	. 07078	. 06944	. 06811
-1.3	. 09680	. 09510	. 09342	. 09176	. 09012	. 08851	. 08691	. 08534	. 08379	. 08226
-1.2	. 11507	. 11314	. 11123	. 10935	. 10749	. 10565	. 10383	. 10204	. 10027	. 09853
-1.1	. 13567	. 13350	. 13136	. 12924	. 12714	. 12507	. 12302	. 12100	. 11900	. 11702
-1.0	. 15866	. 15625	. 15386	. 15151	. 14917	. 14686	. 14457	. 14231	. 14007	. 13786
-0.9	. 18406	. 18141	. 17879	. 17619	. 17361	. 17106	. 16853	. 16602	. 16354	. 16109
-0.8	. 21186	. 20897	. 20611	. 20327	. 20045	. 19766	. 19489	. 19215	. 18943	. 18673
-0.7	. 24196	. 23885	. 23576	. 23270	. 22965	. 22663	. 22363	. 22065	. 21770	. 21476
-0.6	. 27425	. 27093	. 26763	. 26435	. 26109	. 25785	. 25463	. 25143	. 24825	. 24510
-0.5	. 30854	. 30503	, 0153	. 29806	. 29460	. 29116	. 28774	. 28434	. 28096	. 27760
-0.4	. 34458	. 34090	. 33724	. 33360	. 32997	. 32636	. 32276	. 31918	. 31561	. 31207
-0.3	. 38209	. 37828	. 37448	. 37070	. 36693	. 36317	. 35942	. 35569	. 35197	. 34827
-0.2	. 42074	. 41683	. 41294	. 40905	. 40517	. 40129	. 39743	. 39358	. 38974	. 38591
-0.1-	-46017	. 45620	.45224	. 44828	. 44433	. 44038	. 43644	. 43251	. 42858	. 42465
-0.0	. 50000	. 49601	. 49202	. 48803	. 48405	. 48006	. 47608	. 47210	. 46812	. 46414

L6666 ${ }^{\circ}$	L6666	96666°	$96666{ }^{\circ}$	96666	96666°	96666°	96666°	S6666	S6666	$6 . \varepsilon$
S6666	¢6666	S6666	จ6666 ${ }^{\circ}$	ャ6666	ャ6666	ャ6666＊	E6666＊	£6666	£6666 ${ }^{\circ}$	$8^{\circ} \mathrm{E}$
26666	26666	26666	26666 ${ }^{\circ}$	L6666	［6666＊	06666°	$06666{ }^{\circ}$	06666 ${ }^{\circ}$	68666°	L＇$¢$
68666°	$88666{ }^{\circ}$	$88666{ }^{\circ}$	L8666 ${ }^{\circ}$	L8666 ${ }^{\circ}$	98666°	98666°	S8666 ${ }^{\circ}$	S8666	886666°	$9^{\circ} \mathrm{E}$
E8666 ${ }^{\circ}$	E8666 ${ }^{\circ}$	28666 ${ }^{\circ}$	I $8666{ }^{\circ}$	18666°	08666°	64666°	8L666 ${ }^{\circ}$	8L666 ${ }^{\circ}$	LL666 ${ }^{\circ}$	$¢^{\bullet}$＇$¢$
9L666	SL666	ヤL666 ${ }^{\circ}$	EL666 ${ }^{\circ}$	2L666 ${ }^{\circ}$	［ 26666°	$0 \angle 666^{\circ}$	69666°	89666°	99666°	ャ＊ε
S9666	†9666 ${ }^{\circ}$	29666°	19666°	09666°	85666	LS666 ${ }^{\circ}$	SS666 ${ }^{\circ}$	ES666	2¢666	$\varepsilon^{\circ} \varepsilon$
05666	87666	9十666＊		て7666	0ャ666	88666	$98666{ }^{\circ}$	ャ¢666	［E666 ${ }^{\circ}$	$\boldsymbol{\chi}$＇ε
67666°	97666°	七Z666 ${ }^{\circ}$	I2666	81666	91666	\＆ 1666°	01666	90666°	¢0666	I＇\＆
00666°	$96866{ }^{\circ}$	£6866 ${ }^{\circ}$	$68866{ }^{\circ}$	98866°	28866 ${ }^{\circ}$	8L866 ${ }^{\circ}$	ヤL866 ${ }^{\circ}$	69866	¢9866	$0^{\circ} \mathrm{E}$
［9866	95866	［S866	9ャ866	Lt866	98866°	［18866	S2866	61866	E1866	6.2
L0866	10866	S6L66	$88 \angle 66^{\circ}$	I8L66	ヤLL66 ${ }^{\circ}$	L9L66	09 666°	2SL66		$8^{\circ} \mathrm{Z}$
9عL66	8てL66	0てL66＊	I 1266°	20L66	E6966 ${ }^{\circ}$	E8966 ${ }^{\circ}$	ヤ $2966{ }^{\circ}$	ャ9966	¢S966	L゚て
\＆ャ966＊	てE966	12966 ${ }^{\circ}$	60966°	86S66	S8S66	ELS66 ${ }^{\circ}$	09566	LtS66	七\＆S66	
02S66	90566°	26ヤ66 ${ }^{\circ}$	LLD66 ${ }^{\circ}$	［9766	$9 \downarrow \square 66^{\circ}$	0عヤ76 ${ }^{\circ}$	£ \downarrow ¢ 66°	96E66	6LE66	¢＇Z
［9E66 ${ }^{\circ}$	£ヤ¢66＊	†て¢66＊	S0866	98766	99766°	Sャ266	ヤてZ66	20266 ${ }^{\circ}$	08166	ナ゙て
8SI66	\downarrow ¢ 66°	［1166＊	98066°	［9066	9 9066	01066	£8686 ${ }^{\circ}$	95686	82686°	\mathcal{E}^{*} Z
66886°	$0 L 886^{\circ}$	0t886 ${ }^{\circ}$	60886	8LL86 ${ }^{\circ}$	SヤL86	EIL86 ${ }^{\circ}$	$6 L 986{ }^{\circ}$	St986 ${ }^{\circ}$	01986	\boldsymbol{Z}^{\prime} 亿
セLS86 ${ }^{\circ}$	LES86	00586°	［9786	でヤ86 ${ }^{\circ}$	Z8E86	LヤE86	00E86	LS286 ${ }^{\circ}$	ャI286	1＇て
69186	七てI $86{ }^{\circ}$	LL086 ${ }^{\circ}$	0ع086 ${ }^{\circ}$	286L6	て\＆6L6 ${ }^{\circ}$	288L6 ${ }^{\circ}$	IE8 $26{ }^{\circ}$	8LLL6 ${ }^{\circ}$	SZLL6 ${ }^{\circ}$	$0 \cdot 7$
029 ${ }^{\circ}{ }^{\circ}$	S1916	8SSL6	00SL6	Itt 26	［8EL6	$02 \varepsilon 16{ }^{\circ}$	LSZL6	E61L6 ${ }^{\circ}$	8てIL6	61
290L6	¢6696	92696°	95896	78L96	てIL96	8\＆996	29596＊	¢8t96＊	L0t96＊	$8^{\circ} \mathrm{I}$
LてE96＊	9ャて96＊	ャ9196＊	$08096{ }^{\circ}$	ャ6656	L06S6	81856	8てLS6	LE956 ${ }^{\circ}$	£ャS¢6 ${ }^{\circ}$	$L^{\prime} \mathrm{I}$
6 切 6	てSES6＊	ャSZS6＊	ャSIS6	£S0S6＊		¢ $¢ 8 \bullet 6{ }^{\circ}$	8\＆ $2 ⿰ ㇒ 6^{\circ}$	0と9ャ6 ${ }^{\circ}$	0ZSt6	$9{ }^{\circ} \mathrm{I}$
80 ± 76	S6てヤ6＊	6LIt6	290ャ6	¢ャ6\＆6	228¢6	669\＆6	ヤLSE6 ${ }^{\circ}$	$8 ⿰ 七$ ¢ 6°	6IEE6	$\mathrm{S}^{\prime \prime} \mathrm{I}$
68186	950E6	て2626	¢8L26	Lヤ9て6	LOS26	ャ9\＆26	02てZ6	ELOZ6＊	ャて6I6＊	$\nabla^{\prime} \mathrm{I}$
カLLI6＊	［て916 ${ }^{\circ}$	$99+16^{\circ}$	60¢16 ${ }^{\circ}$	6tll 6°	88606°	ャ2806 ${ }^{\circ}$	85906 ${ }^{\circ}$	06t06	02E06＊	$\varepsilon^{*} I$
LもI06＊	£L668＊	96L68	L1968 ${ }^{\circ}$	¢Et68	［S268	¢9068＊	LL888＊	98988＊	\＆6t88＇	$て ゙ I$
86288＊	00188＊	006 28°	869 ${ }^{\circ}{ }^{\circ}$	E6tL8＊	98てL8＊	9L0L8	七9898＊	05998＊	£દャ98＊	［•I
七Iて98＊	£6658	69LS8 ${ }^{\circ}$	£ャ¢¢8＊	†IES8＊	E8058＊	6t8t8＊	七I9ャ8＊	SLEt8 ${ }^{\circ}$	七¢โゅ8＊	$0^{\circ} \mathrm{I}$
［6888	979¢8	86EE8 ${ }^{\circ}$	LヵIE8	ャ6828＊	6E978＇	I8EZ8	［ZIZ8＇	6S818 ${ }^{\circ}$	カ6SI8＊	6.0
LZEL8＊	LSO18＊	S8L08＊	IIS08＊	ャعて08＊	SS661	EL96 ${ }^{\circ}$	6886L	E016 ${ }^{\circ}$	七I88 ${ }^{\circ}$	8.0
ャて¢8 ${ }^{\circ}$	0عZ8 L°	SE6LL＇	LE9LL＇	LEELL＇	SEOLL＇	0عL9 ${ }^{\circ}$	七て七9L＇	SI19 L°	t08SL＇	$L^{\circ} 0$
067 ¢ L°	SLISL＇	LS8tL＇	LESカL＇	¢IてヤL＇	［68E L°	S9SEL．	LEてEL	L062L	SLSZL＇	$9^{\circ} 0$
$0 \downarrow$ OてL。	ヤ061L゙	99SIL ${ }^{\circ}$	9でIL゙	t880 ${ }^{\circ}$	0tSOL	ヤ610 ${ }^{\circ}$	Lヤ869＊	L6ヤ69＊	9ヤI69＊	$¢^{\circ} 0$
£6L89＊	6¢ャ89	28089	七てLL9	†9¢L9	E00L9 ${ }^{\circ}$	0t999	9LZ99＇	01659	てヵऽऽ9	$\nabla^{*} 0$
ELIS9＊	£08ヤ9＊＊	［ともt9＊	8S0ャ9＊＊	£89¢9＊	LOE\＆9＊	0ع629	ZS¢29＊	てLIZ9＊	16L19＊	$\mathcal{E}^{\circ} 0$
$60 \pm\left[9^{*}\right.$	97019＊	ても909＊	LSて09＊	［ 1865°	$\varepsilon 8 \downarrow 65^{\circ}$	¢6065＊	90L85	LIE85＊	976LS	${ }^{\prime} 0$
SESLS	てヵILS	6tL95＊	9¢を95＊	29655	L9S5S	ZLISS	9 $21 \pm 5^{\circ}$	08 E ¢ ${ }^{\text {¢ }}$	E86ES	$1 \cdot 0$
98SES	881ES	06LZS＇	て6\＆Z5＇	ャ66IS＇	S6SIS	L6ITS＊	86LOS	$6680{ }^{\circ}$	0000s	0.0
60°	80°	L0 ${ }^{\circ}$	90°	S0 ${ }^{\circ}$	t0 ${ }^{\circ}$	E0＇	20°	10	00°	Z

Program: F Y M.Tech

Course Code:AU-PG-03

Course Name: Disaster Management
F.U.M.Tech (Disaster management) sem-II Notes: 1. Answer any five questions.

2 All questions carry 20 points.

Q.No.	Questions	Points	CO	BL	Module No.
1	1.1 What is Disaster Risk Reduction? Explain in detail.	10	1	2	5
	1.2 Explain 'exposure' with an example and its drivers. Explain 'vulnerability' and its drivers.	10	1	2	5
2	2.1 What are the seven Global targets of the Sendai Framework for Disaster Risk Reduction? What was the status of Target E by 2019?	10	4	2	5
	2.2 What are the four Global priorities for action of the Sendai Framework for Disaster Risk Reduction?	10	4	2	5
3	3.1 What is Disaster Mitigation? How does it differ from other disaster management disciplines/phases? What are goals of Disaster Mitigation?	10	4	2	6
	3.2 Explain structural and non-structural activities in Disaster Mitigation. What are mitigation strategies for floods?	10	3	2	6
4	4.1 What is the aim of Disaster/Emergency Response? List out the key activities and elements of Disaster Response.	10	3	3	4
	4.2 Explain the three Humanitarian Principles that Humanitarian agencies must observe while responding to Disasters.	10	3	3	4

End Semester - July 2023 Examinations

